April 16, 2011

role of nanotechnology in biology

Nanotechnology refers to the interactions of cellular and molecular components and engineered materials—typically clusters of atoms, molecules, and molecular fragments—at the most elemental level of biology. Such nanoscale objects— typically, though not exclusively, with dimensions smaller than 100 nanometers—can be useful by themselves or as part of larger devices containing multiple nanoscale objects. At the nanoscale, the physical, chemical, and biological properties of materials differ fundamentally and often noninvasive access to the interior of a living cell affords the opportunity for unprecedented gains on both clinical and basic research frontiers.
unexpectedly from those of the corresponding bulk material because the quantum mechanical properties of atomic interactions are influenced by material variations on the nanometer scale. In fact, by creating nanometer-scale structures, it is possible to control fundamental characteristics of a material, including its melting point, magnetic properties, and even color, without changing the material’s chemical composition.

Nanoscale devices and nanoscale components of larger devices are of the same size as biological entities. They are smaller than human cells (10,000 to 20,000 nanometers in diameter) and organelles and similar in size to large biological macromolecules such as enzymes and receptors— hemoglobin, for example, is approximately 5 nm in diameter, while the lipid bilayer surrounding cells is on the order of 6 nm thick. Nanoscale devices smaller than 50 nanometers can easily enter most cells, while those smaller than 20 nanometers can transit out of blood vessels. As a result, nanoscale devices can readily interact with biomolecules on both the cell surface and within the cell, often in ways that do not alter the behavior and biochemical properties
of those molecules. From a scientific viewpoint, the actual construction and characterization of nanoscale devices may contribute to understanding carcinogenesis.
Noninvasive access to the interior of a living cell affords the opportunity for unprecedented gains on both clinical and basic research frontiers. The ability to simultaneously interact with multiple critical proteins and nucleic acids at the molecular scale should provide better understanding of the complex regulatory and signaling networks that govern the behavior of cells in their normal state and as they undergo malignant transformation.

Nanotechnology provides a platform for integrating efforts in proteomics with other scientific investigations into the molecular nature of cancer by giving researchers the opportunity to simultaneously measure gene and protein expression, recognize specific protein structures and structural domains, and follow protein transport among different cellular compartments. Similarly, nanoscale devices are already proving that they can deliver therapeutic agents that can act where they are likely to be most effective, that is, within the cell or even within specific organelles. Yet despite their small size, nanoscale devices can also hold tens of thousands of small molecules, such as a contrast agent or a multicomponent diagnostic system capable of assaying a cell’s metabolic state, creating the opportunity for unmatched sensitivity in detecting cancer in its earliest stages. For example, current approaches may link a monoclonal antibody to a single molecule of an MRI contrast agent, requiring that many hundreds or thousands of this construct reach and bind to a targeted cancer cell in order to create a strong enough signal to be detected via MRI. Now imagine the same cancer-homing monoclonal antibody attached to a nanoparticle that contains tens of thousands of the same contrast agent—if even one such construct reaches and binds to a cancer cell, it would be detectable.

No comments:

Post a Comment

Search